Monteiro H, Paiva A, Duarte ARC, Galamba N.

Deep eutectic solvents (DESs) are an emerging class of green solvents with a wide spectrum of potential applications whose properties may be further tailored through the addition of water. Here, we study, through molecular dynamics, the influence of water on the properties of a betaine–glycerol–water (B:G:W) DES (1:2:ζ; ζ = 0 to 100), aiming at getting insight into the structural and dynamic crossover between a DES and an aqueous solution. The density, shear viscosity, and diffusion coefficients are found to exhibit a non-linear dependence of ζ, similar to that observed for the solvation layers’ composition. Each Gly and Bet are replaced, respectively, by ∼3 and ∼5 water molecules, with the highest rates of depletion being found for Gly around Bet and Gly around Gly. Above ζ = 7 (70 mol %; 29.5 wt %), a major structural transformation occurs, with the complete disruption of the second Bet-Gly solvation layer and the formation of a new second layer at a shorter distance, accompanied by a sudden change in the rate of increase of the components’ diffusion. Nonetheless, opposite to other DES, our results indicate a smooth crossover between a DES and an aqueous solution.

Doi: 10.1021/acssuschemeng.1c07461

Monteiro H, Paiva A, Duarte ARC, Galamba N (2022) Structure and Dynamic Properties of a Glycerol–Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution?. ACS Sustainable Chem. Eng, 10, 3501-3512. doi: 10.1021/acssuschemeng.1c07461